
Chapter 1. Basic

Structure of Computers

Functional Units

Functional Units

Figure 1.1. Basic functional units of a computer.

I/O Processor

Output

Memory

Input and
Arithmetic

logic

Control

Information Handled by a

Computer

⚫ Instructions/machine instructions
➢ Govern the transfer of information within a computer as

well as between the computer and its I/O devices

➢ Specify the arithmetic and logic operations to be
performed

➢ Program

⚫ Data
➢ Used as operands by the instructions

➢ Source program

⚫ Encoded in binary code – 0 and 1

Memory Unit

⚫ Store programs and data

⚫ Two classes of storage
➢ Primary storage
❖ Fast

❖ Programs must be stored in memory while they are being executed

❖ Large number of semiconductor storage cells

❖ Processed in words

❖ Address

❖ RAM and memory access time

❖ Memory hierarchy – cache, main memory

➢ Secondary storage – larger and cheaper

Arithmetic and Logic Unit

(ALU)

⚫ Most computer operations are executed in

ALU of the processor.

⚫ Load the operands into memory – bring them

to the processor – perform operation in ALU –

store the result back to memory or retain in

the processor.

⚫ Registers

⚫ Fast control of ALU

Control Unit

⚫ All computer operations are controlled by the control
unit.

⚫ The timing signals that govern the I/O transfers are
also generated by the control unit.

⚫ Control unit is usually distributed throughout the
machine instead of standing alone.

⚫ Operations of a computer:
➢ Accept information in the form of programs and data through an

input unit and store it in the memory

➢ Fetch the information stored in the memory, under program control,
into an ALU, where the information is processed

➢ Output the processed information through an output unit

➢ Control all activities inside the machine through a control unit

The processor : Data Path and

Control

PC

Register

Bank

Data Memory

Address

Instructions Address

Data

Instruction

Memory

A

L

U

Data

Register #

Register #

Register #

➢Two types of functional units:

➢elements that operate on data values (combinational)

➢ elements that contain state (state elements)

Five Execution Steps
Step name Action for R-type

instructions

Action for Memory-

reference Instructions

Action for

branches

Action for

jumps

Instruction fetch IR = MEM[PC]

PC = PC + 4

Instruction decode/ register

fetch

A = Reg[IR[25-21]]

B = Reg[IR[20-16]]

ALUOut = PC + (sign extend (IR[15-0])<<2)

Execution, address

computation, branch/jump

completion

ALUOut = A op B ALUOut = A+sign

extend(IR[15-0])

IF(A==B) Then

PC=ALUOut

PC=PC[31-

28]||(IR[25-

0]<<2)

Memory access or R-type

completion

Reg[IR[15-11]] =

ALUOut

Load:MDR =Mem[ALUOut]

or

Store:Mem[ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] =

MDR

Basic Operational

Concepts

Review

⚫ Activity in a computer is governed by instructions.

⚫ To perform a task, an appropriate program

consisting of a list of instructions is stored in the

memory.

⚫ Individual instructions are brought from the memory

into the processor, which executes the specified

operations.

⚫ Data to be used as operands are also stored in the

memory.

A Typical Instruction

⚫ Add LOCA, R0

⚫ Add the operand at memory location LOCA to the
operand in a register R0 in the processor.

⚫ Place the sum into register R0.

⚫ The original contents of LOCA are preserved.

⚫ The original contents of R0 is overwritten.

⚫ Instruction is fetched from the memory into the
processor – the operand at LOCA is fetched and
added to the contents of R0 – the resulting sum is
stored in register R0.

Separate Memory Access and

ALU Operation

⚫ Load LOCA, R1

⚫ Add R1, R0

⚫ Whose contents will be overwritten?

Connection Between the

Processor and the Memory
Figure 1.2. Connections between the processor and the memory.

Processor

Memory

PC

IR

MDR

Control

ALU

R
n 1-

R1

R0

MAR

n general purpose
registers

Registers

⚫ Instruction register (IR)

⚫ Program counter (PC)

⚫ General-purpose register (R0 – Rn-1)

⚫ Memory address register (MAR)

⚫ Memory data register (MDR)

Typical Operating Steps

⚫ Programs reside in the memory through input
devices

⚫ PC is set to point to the first instruction

⚫ The contents of PC are transferred to MAR

⚫ A Read signal is sent to the memory

⚫ The first instruction is read out and loaded
into MDR

⚫ The contents of MDR are transferred to IR

⚫ Decode and execute the instruction

Typical Operating Steps

(Cont’)

⚫ Get operands for ALU
➢ General-purpose register

➢ Memory (address to MAR – Read – MDR to ALU)

⚫ Perform operation in ALU

⚫ Store the result back
➢ To general-purpose register

➢ To memory (address to MAR, result to MDR – Write)

⚫ During the execution, PC is
incremented to the next instruction

Interrupt

⚫ Normal execution of programs may be preempted if

some device requires urgent servicing.

⚫ The normal execution of the current program must

be interrupted – the device raises an interrupt

signal.

⚫ Interrupt-service routine

⚫ Current system information backup and restore (PC,

general-purpose registers, control information,

specific information)

Bus Structures

⚫ There are many ways to connect different

parts inside a computer together.

⚫ A group of lines that serves as a connecting

path for several devices is called a bus.

⚫ Address/data/control

Bus Structure

⚫ Single-bus

Figure 1.3. Single-bus structure.

MemoryInput Output Processor

Speed Issue

⚫ Different devices have different

transfer/operate speed.

⚫ If the speed of bus is bounded by the slowest

device connected to it, the efficiency will be

very low.

⚫ How to solve this?

⚫ A common approach – use buffers.

Performance

Performance

⚫ The most important measure of a computer is

how quickly it can execute programs.

⚫ Three factors affect performance:

➢ Hardware design

➢ Instruction set

➢ Compiler

Performance

⚫ Processor time to execute a program depends on the hardware
involved in the execution of individual machine instructions.

Main
memory Processor

Bus

Cache
memory

Figure 1.5. The processor cache.

Performance

⚫ The processor and a relatively small cache

memory can be fabricated on a single

integrated circuit chip.

⚫ Speed

⚫ Cost

⚫ Memory management

Processor Clock

⚫ Clock, clock cycle, and clock rate

⚫ The execution of each instruction is divided

into several steps, each of which completes

in one clock cycle.

⚫ Hertz – cycles per second

Basic Performance Equation

⚫ T – processor time required to execute a program that has been
prepared in high-level language

⚫ N – number of actual machine language instructions needed to
complete the execution (note: loop)

⚫ S – average number of basic steps needed to execute one
machine instruction. Each step completes in one clock cycle

⚫ R – clock rate

⚫ Note: these are not independent to each other

R

SN
T

=

How to improve T?

Pipeline and Superscalar

Operation

⚫ Instructions are not necessarily executed one after
another.

⚫ The value of S doesn’t have to be the number of
clock cycles to execute one instruction.

⚫ Pipelining – overlapping the execution of successive
instructions.

⚫ Add R1, R2, R3

⚫ Superscalar operation – multiple instruction
pipelines are implemented in the processor.

⚫ Goal – reduce S (could become <1!)

Clock Rate

⚫ Increase clock rate
➢ Improve the integrated-circuit (IC) technology to make

the circuits faster

➢ Reduce the amount of processing done in one basic step
(however, this may increase the number of basic steps
needed)

⚫ Increases in R that are entirely caused by
improvements in IC technology affect all
aspects of the processor’s operation equally
except the time to access the main memory.

CISC and RISC

⚫ Tradeoff between N and S

⚫ A key consideration is the use of pipelining

➢ S is close to 1 even though the number of basic steps

per instruction may be considerably larger

➢ It is much easier to implement efficient pipelining in

processor with simple instruction sets

⚫ Reduced Instruction Set Computers (RISC)

⚫ Complex Instruction Set Computers (CISC)

Compiler

⚫ A compiler translates a high-level language program

into a sequence of machine instructions.

⚫ To reduce N, we need a suitable machine instruction

set and a compiler that makes good use of it.

⚫ Goal – reduce N×S

⚫ A compiler may not be designed for a specific

processor; however, a high-quality compiler is

usually designed for, and with, a specific processor.

Performance Measurement

⚫ T is difficult to compute.

⚫ Measure computer performance using benchmark programs.

⚫ System Performance Evaluation Corporation (SPEC) selects and
publishes representative application programs for different application
domains, together with test results for many commercially available
computers.

⚫ Compile and run (no simulation)

⚫ Reference computer

=

=

=

n

i

n
iSPECratingSPEC

ratingSPEC

1

1

)(

under testcomputer on the timeRunning

computer reference on the timeRunning

Multiprocessors and

Multicomputers

⚫ Multiprocessor computer
➢ Execute a number of different application tasks in parallel

➢ Execute subtasks of a single large task in parallel

➢ All processors have access to all of the memory – shared-memory

multiprocessor

➢ Cost – processors, memory units, complex interconnection networks

⚫ Multicomputers
➢ Each computer only have access to its own memory

➢ Exchange message via a communication network – message-

passing multicomputers

Chapter 2. Machine

Instructions and

Programs

Objectives

⚫ Machine instructions and program execution,

including branching and subroutine call and return

operations.

⚫ Number representation and addition/subtraction in

the 2’s-complement system.

⚫ Addressing methods for accessing register and

memory operands.

⚫ Assembly language for representing machine

instructions, data, and programs.

⚫ Program-controlled Input/Output operations.

Number, Arithmetic

Operations, and

Characters

Signed Integer

⚫ 3 major representations:

Sign and magnitude

One’s complement

Two’s complement

⚫ Assumptions:

4-bit machine word

16 different values can be represented

Roughly half are positive, half are negative

Sign and Magnitude

Representation

0000

0111

0011

1011

1111

1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7-0

-1

-2

-3

-4

-5

-6

-7

0 100 = + 4

1 100 = - 4

+

-

High order bit is sign: 0 = positive (or zero), 1 = negative
Three low order bits is the magnitude: 0 (000) thru 7 (111)
Number range for n bits = +/-2n-1 -1
Two representations for 0

One’s Complement

Representation

⚫ Subtraction implemented by addition & 1's complement

⚫ Still two representations of 0! This causes some problems

⚫ Some complexities in addition

0000

0111

0011

1011

1111

1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7-7

-6

-5

-4

-3

-2

-1

-0

0 100 = + 4

1 011 = - 4

+

-

Two’s Complement

Representation

0000

0111

0011

1011

1111

1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7-8

-7

-6

-5

-4

-3

-2

-1

0 100 = + 4

1 100 = - 4

+

-

⚫ Only one representation for 0

⚫ One more negative number than positive

number

like 1's comp
except shifted
one position
clockwise

Binary, Signed-Integer

Representations

0
0
0
0
0
0

0
0
1
1
1
1
1
1
1
1

0
0

0
0
0
0
0
0

1
1
1
1

1
1
1
1

1
1
0
0
1
1

0
0
0
0
1
1
0
0
1
1

1
0
1
0
1
0

1
0
0
1
0
1
0
1
0
1

1+

1-

2+
3+
4+
5+
6+

7+

2-
3-
4-
5-
6-
7-

8-
0+
0-

1+
2+
3+
4+
5+
6+

7+

0+
7-
6-
5-
4-
3-
2-
1-
0-

1+
2+
3+
4+
5+
6+

7+

0+

7-
6-
5-
4-
3-
2-
1-

b3 b2b1b0

Sign and
magnitude 1's complement 2's complement

B Values represented

Figure 2.1. Binary, signed-integer representations.

Page 28

Addition and Subtraction – 2’s

Complement

4

+ 3

7

0100

0011

0111

-4

+ (-3)

-7

1100

1101

11001

4

- 3

1

0100

1101

10001

-4

+ 3

-1

1100

0011

1111

If carry-in to the high
order bit =
carry-out then ignore
carry

if carry-in differs from
carry-out then overflow

Simpler addition scheme makes twos complement the most common
choice for integer number systems within digital systems

2’s-Complement Add and

Subtract Operations

1 1 0 1
0 1 1 1

0 1 0 0

0 0 1 0
1 1 0 0

1 1 1 0

0 1 1 0
1 1 0 1

0 0 1 1

1 0 0 1
0 1 0 1

1 1 1 0

1 0 0 1
1 1 1 1

1 0 0 0

0 0 1 0
0 0 1 1

0 1 0 1

4+()

2-()

3+()

2-()

8-()

5+()

+

+

+

+

+

+

1 1 1 0

0 1 0 0
1 0 1 0

0 1 1 1
1 1 0 1

0 1 0 0

6-()

2-()

4+()

3-()

4+()

7+()
+

+
(b)

(d)1 0 1 1
1 1 1 0

1 0 0 1

1 1 0 1
1 0 0 1

0 0 1 0
0 1 0 0

0 1 1 0
0 0 1 1

1 0 0 1
1 0 1 1

1 0 0 1
0 0 0 1

0 0 1 0
1 1 0 1

0 1 0 1

0 0 1 0
0 0 1 1

5-()

2+()
3+()

5+()

2+()
4+()

2-()

7-()

3-()
7-()

6+()
3+()

1+()

7-()
5-()

7-()

2+()
3-()

+

+

-

-

-

-

-

-

(a)

(c)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 2.4. 2's-complement Add and Subtract operations.

Page 31

Overflow - Add two positive numbers to get a

negative number or two negative numbers to

get a positive number

5 + 3 = -8 -7 - 2 = +7

0000

0001

0010

0011

1000

0101

0110

0100

1001

1010

1011

1100

1101

0111

1110

1111

+0

+1

+2

+3

+4

+5

+6

+7-8

-7

-6

-5

-4

-3

-2

-1

0000

0001

0010

0011

1000

0101

0110

0100

1001

1010

1011

1100

1101

0111

1110

1111

+0

+1

+2

+3

+4

+5

+6

+7-8

-7

-6

-5

-4

-3

-2

-1

Overflow Conditions

5

3

-8

0 1 1 1
0 1 0 1

0 0 1 1

1 0 0 0

-7

-2

7

1 0 0 0
1 0 0 1

1 1 0 0

1 0 1 1 1

5

2

7

0 0 0 0
0 1 0 1

0 0 1 0

0 1 1 1

-3

-5

-8

1 1 1 1
1 1 0 1

1 0 1 1

1 1 0 0 0

Overflow Overflow

No overflow No overflow

Overflow when carry-in to the high-order bit does not equal carry out

Sign Extension

⚫ Task:

⚫ Given w-bit signed integer x

⚫ Convert it to w+k-bit integer with same value

⚫ Rule:

⚫ Make k copies of sign bit:

⚫ X = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X • • • • • •

• • •

w

wk

Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101

ix 15213 00 00 C4 92 00000000 00000000 00111011 01101101

y -15213 C4 93 11000100 10010011

iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Memory Locations,

Addresses, and

Operations

Memory Location, Addresses,

and Operation

⚫ Memory consists

of many millions of

storage cells,

each of which can

store 1 bit.

⚫ Data is usually

accessed in n-bit

groups. n is called

word length.

second word

first word

Figure 2.5. Memory words.

nbits

last word

i th word

•
•
•

•
•
•

Memory Location, Addresses,

and Operation

⚫ 32-bit word length example

(b) Four characters

charactercharactercharacter character

(a) A signed integer

Sign bit: for positive numbers

for negative numbers

ASCIIASCIIASCIIASCII

32 bits

8 bits 8 bits 8 bits 8 bits

b31 b30 b1 b0

b31 0=

b31 1=

• • •

Memory Location, Addresses,

and Operation

⚫ To retrieve information from memory, either for one

word or one byte (8-bit), addresses for each location

are needed.

⚫ A k-bit address memory has 2k memory locations,

namely 0 – 2k-1, called memory space.

⚫ 24-bit memory: 224 = 16,777,216 = 16M (1M=220)

⚫ 32-bit memory: 232 = 4G (1G=230)

⚫ 1K(kilo)=210

⚫ 1T(tera)=240

Memory Location, Addresses,

and Operation

⚫ It is impractical to assign distinct addresses

to individual bit locations in the memory.

⚫ The most practical assignment is to have

successive addresses refer to successive

byte locations in the memory – byte-

addressable memory.

⚫ Byte locations have addresses 0, 1, 2, … If

word length is 32 bits, they successive words

are located at addresses 0, 4, 8,…

Big-Endian and Little-Endian

Assignments

2
k

4- 2
k

3- 2
k

2- 2
k

1- 2
k

4-2
k

4-

0 1 2 3

4 5 6 7

00

4

2
k

1- 2
k

2- 2
k

3- 2
k

4-

3 2 1 0

7 6 5 4

Byte addressByte address

(a) Big-endian assignment (b) Little-endian assignment

4

Word

address

•
•
•

•
•
•

Figure 2.7. Byte and word addressing.

Big-Endian: lower byte addresses are used for the most significant bytes of the word

Little-Endian: opposite ordering. lower byte addresses are used for the less significant

bytes of the word

Memory Location, Addresses,

and Operation

⚫ Address ordering of bytes

⚫ Word alignment

⚫ Words are said to be aligned in memory if they
begin at a byte addr. that is a multiple of the num
of bytes in a word.

⚫ 16-bit word: word addresses: 0, 2, 4,….

⚫ 32-bit word: word addresses: 0, 4, 8,….

⚫ 64-bit word: word addresses: 0, 8,16,….

⚫ Access numbers, characters, and character
strings

Memory Operation

⚫ Load (or Read or Fetch)

➢ Copy the content. The memory content doesn’t change.

➢ Address – Load

➢ Registers can be used

⚫ Store (or Write)

➢ Overwrite the content in memory

➢ Address and Data – Store

➢ Registers can be used

Instruction and

Instruction

Sequencing

“Must-Perform” Operations

⚫ Data transfers between the memory and the

processor registers

⚫ Arithmetic and logic operations on data

⚫ Program sequencing and control

⚫ I/O transfers

Register Transfer Notation

⚫ Identify a location by a symbolic name

standing for its hardware binary address

(LOC, R0,…)

⚫ Contents of a location are denoted by placing

square brackets around the name of the

location (R1←[LOC], R3 ←[R1]+[R2])

⚫ Register Transfer Notation (RTN)

Assembly Language Notation

⚫ Represent machine instructions and

programs.

⚫ Move LOC, R1 = R1←[LOC]

⚫ Add R1, R2, R3 = R3 ←[R1]+[R2]

CPU Organization

⚫ Single Accumulator

⚫ Result usually goes to the Accumulator

⚫ Accumulator has to be saved to memory quite

often

⚫ General Register

⚫ Registers hold operands thus reduce memory

traffic

⚫ Register bookkeeping

⚫ Stack

⚫ Operands and result are always in the stack

Instruction Formats

⚫ Three-Address Instructions

⚫ ADD R1, R2, R3 R1 ← R2 + R3

⚫ Two-Address Instructions

⚫ ADD R1, R2 R1 ← R1 + R2

⚫ One-Address Instructions

⚫ ADD M AC ← AC + M[AR]

⚫ Zero-Address Instructions

⚫ ADD TOS ← TOS + (TOS – 1)

⚫ RISC Instructions

⚫ Lots of registers. Memory is restricted to Load & Store

Opcode Operand(s) or Address(es)

Instruction Formats

Example: Evaluate (A+B) (C+D)

⚫ Three-Address

1. ADD R1, A, B ; R1 ← M[A] + M[B]

2. ADD R2, C, D ; R2 ← M[C] + M[D]

3. MUL X, R1, R2 ; M[X] ← R1 R2

Instruction Formats

Example: Evaluate (A+B) (C+D)

⚫ Two-Address

1. MOV R1, A ; R1 ← M[A]

2. ADD R1, B ; R1 ← R1 + M[B]

3. MOV R2, C ; R2 ← M[C]

4. ADD R2, D ; R2 ← R2 + M[D]

5. MUL R1, R2 ; R1 ← R1 R2

6. MOV X, R1 ; M[X] ← R1

Instruction Formats

Example: Evaluate (A+B) (C+D)

⚫ One-Address

1. LOAD A ; AC ← M[A]

2. ADD B ; AC ← AC + M[B]

3. STORET ; M[T] ← AC

4. LOAD C ; AC ← M[C]

5. ADD D ; AC ← AC + M[D]

6. MUL T ; AC ← AC M[T]

7. STOREX ; M[X] ← AC

Instruction Formats
Example: Evaluate (A+B) (C+D)

⚫ Zero-Address

1. PUSH A ; TOS ← A

2. PUSH B ; TOS ← B

3. ADD ; TOS ← (A + B)

4. PUSH C ; TOS ← C

5. PUSH D ; TOS ← D

6. ADD ; TOS ← (C + D)

7. MUL ; TOS ←

(C+D)(A+B)

8. POP X ; M[X] ← TOS

Instruction Formats
Example: Evaluate (A+B) (C+D)

⚫ RISC

1. LOAD R1, A ; R1 ← M[A]

2. LOAD R2, B ; R2 ← M[B]

3. LOAD R3, C ; R3 ← M[C]

4. LOAD R4, D ; R4 ← M[D]

5. ADD R1, R1, R2 ; R1 ← R1 + R2

6. ADD R3, R3, R4 ; R3 ← R3 + R4

7. MUL R1, R1, R3 ; R1 ← R1 R3

8. STOREX, R1 ; M[X] ← R1

Using Registers

⚫ Registers are faster

⚫ Shorter instructions

⚫ The number of registers is smaller (e.g. 32

registers need 5 bits)

⚫ Potential speedup

⚫ Minimize the frequency with which data is

moved back and forth between the memory

and processor registers.

Instruction Execution and

Straight-Line Sequencing

R0,C

B,R0

A,R0

Movei + 8

Begin execution here Movei

ContentsAddress

C

B

A

the program
Data for

segment
program
3-instruction

Addi + 4

Figure 2.8. A program for C [A] + [B].

Assumptions:

- One memory operand

per instruction

- 32-bit word length

- Memory is byte

addressable

- Full memory address

can be directly specified

in a single-word instruction

Two-phase procedure

-Instruction fetch

-Instruction execute

Page 43

Branching

NUMn

NUM2

NUM1

R0,SUM

NUMn,R0

NUM3,R0

NUM2,R0

NUM1,R0

Figure 2.9. A straight-line program for adding n numbers.

Add

Add

Move

SUM

i

Move

Add

i 4n+

i 4n 4-+

i 8+

i 4+

•
•
•

•
•
•

•
•
•

Branching

N,R1Move

NUM n

NUM2

NUM1

R0,SUM

R1

"Next" number to R0

Figure 2.10. Using a loop to add n numbers.

LOOP

Decrement

Move

LOOP

loop
Program

Determine address of
"Next" number and add

N

SUM

n

R0Clear

Branch>0

•
•
•

•
•
•

Branch target

Conditional branch

Condition Codes

⚫ Condition code flags

⚫ Condition code register / status register

⚫ N (negative)

⚫ Z (zero)

⚫ V (overflow)

⚫ C (carry)

⚫ Different instructions affect different flags

Conditional Branch

Instructions

⚫ Example:

⚫ A: 1 1 1 1 0 0 0 0

⚫ B: 0 0 0 1 0 1 0 0

A: 1 1 1 1 0 0 0 0

+(−B): 1 1 1 0 1 1 0 0

1 1 0 1 1 1 0 0

C = 1

S = 1

V = 0

Z = 0

Status Bits

ALU

V Z S C

Zero Check

Cn

Cn-1

Fn-1

A B

F

Addressing

Modes

Generating Memory Addresses

⚫ How to specify the address of branch target?

⚫ Can we give the memory operand address

directly in a single Add instruction in the loop?

⚫ Use a register to hold the address of NUM1;

then increment by 4 on each pass through

the loop.

Addressing Modes

⚫ Implied

⚫ AC is implied in “ADD M[AR]” in “One-Address”

instr.

⚫ TOS is implied in “ADD” in “Zero-Address” instr.

⚫ Immediate

⚫ The use of a constant in “MOV R1, 5”, i.e. R1 ←

5

⚫ Register

⚫ Indicate which register holds the operand

Opcode Mode ...

Addressing Modes
⚫ Register Indirect

⚫ Indicate the register that holds the number of the

register that holds the operand

MOV R1, (R2)

⚫ Autoincrement / Autodecrement

⚫ Access & update in 1 instr.

⚫ Direct Address

⚫ Use the given address to access a memory

location

R1

R2 = 3

R3 = 5

Addressing Modes

⚫ Indirect Address

⚫ Indicate the memory location that holds the

address of the memory location that holds the

data

AR = 101

100

101

102

103

104

0 1 0 4

1 1 0 A

100

101

102

103

104

0

1

2

Addressing Modes

⚫ Relative Address

⚫ EA = PC + Relative Addr

AR = 100

1 1 0 A

PC = 2

+

Could be Positive or
Negative

(2’s Complement)

Addressing Modes

⚫ Indexed

⚫ EA = Index Register + Relative Addr

100

101

102

103

104

AR = 100

1 1 0 A

XR = 2

+

Could be Positive or
Negative

(2’s Complement)

Useful with
“Autoincrement” or
“Autodecrement”

Addressing Modes

⚫ Base Register

⚫ EA = Base Register + Relative Addr

100

101

102

103

104

BR = 100

0 0 0 A

AR = 2

+

Could be Positive or
Negative

(2’s Complement)

Usually points to
the beginning of

an array

0 0 0 5

0 0 1 2

0 1 0 7

0 0 5 9

Addressing Modes

⚫ The different
ways in which
the location of
an operand is
specified in
an instruction
are referred
to as
addressing
modes.

Name Assem bler syn tax Addressing function

Immediate #V alue Op erand = Value

Register R i EA = R i

Absolute (Direct) LOC EA = LOC

Indirect (R i) EA = [R i]
(LOC) EA = [LOC]

Index X(R i) EA = [R i] + X

Base with index (R i ,R j) EA = [R i] + [R j]

Base with index X(R i ,R j) EA = [R i] + [R j] + X
and offset

Relative X(PC) EA = [PC] + X

Autoincremen t (R i)+ EA = [R i] ;
Incremen t R i

Autodecrement (R i) Decremen t R i ;
EA = [R i]

−

Indexing and Arrays

⚫ Index mode – the effective address of the operand is

generated by adding a constant value to the

contents of a register.

⚫ Index register

⚫ X(Ri): EA = X + [Ri]

⚫ The constant X may be given either as an explicit

number or as a symbolic name representing a

numerical value.

⚫ If X is shorter than a word, sign-extension is needed.

Indexing and Arrays

⚫ In general, the Index mode facilitates access

to an operand whose location is defined

relative to a reference point within the data

structure in which the operand appears.

⚫ Several variations:

(Ri, Rj): EA = [Ri] + [Rj]

X(Ri, Rj): EA = X + [Ri] + [Rj]

Relative Addressing

⚫ Relative mode – the effective address is determined

by the Index mode using the program counter in

place of the general-purpose register.

⚫ X(PC) – note that X is a signed number

⚫ Branch>0 LOOP

⚫ This location is computed by specifying it as an

offset from the current value of PC.

⚫ Branch target may be either before or after the

branch instruction, the offset is given as a singed

num.

Additional Modes

⚫ Autoincrement mode – the effective address of the operand is
the contents of a register specified in the instruction. After
accessing the operand, the contents of this register are
automatically incremented to point to the next item in a list.

⚫ (Ri)+. The increment is 1 for byte-sized operands, 2 for 16-bit
operands, and 4 for 32-bit operands.

⚫ Autodecrement mode: -(Ri) – decrement first

R0Clear

R0,SUM

R1
(R2)+,R0

Figure 2.16. The Autoincrement addressing mode used in the program of Figure 2.12.

Initialization

Move

LOOP Add
Decrement

LOOP

#NUM1,R2
N,R1Move

Move

Branch>0

Assembly

Language

Types of Instructions

⚫ Data Transfer Instructions
Name Mnemonic

Load LD

Store ST

Move MOV

Exchange XCH

Input IN

Output OUT

Push PUSH

Pop POP

Data value is
not modified

Data Transfer Instructions

Mode Assembly Register Transfer

Direct address LD ADR AC ← M[ADR]

Indirect address LD @ADR AC ← M[M[ADR]]

Relative address LD $ADR AC ← M[PC+ADR]

Immediate operand LD #NBR AC ← NBR

Index addressing LD ADR(X) AC ← M[ADR+XR]

Register LD R1 AC ← R1

Register indirect LD (R1) AC ← M[R1]

Autoincrement LD (R1)+ AC ← M[R1], R1 ← R1+1

Data Manipulation Instructions

⚫ Arithmetic

⚫ Logical & Bit Manipulation

⚫ Shift

Name Mnemonic

Increment INC

Decrement DEC

Add ADD

Subtract SUB

Multiply MUL

Divide DIV

Add with carry ADDC

Subtract with borrow SUBB

Negate NEG

Name Mnemonic

Clear CLR

Complement COM

AND AND

OR OR

Exclusive-OR XOR

Clear carry CLRC

Set carry SETC

Complement carry COMC

Enable interrupt EI

Disable interrupt DI

Name Mnemonic

Logical shift right SHR

Logical shift left SHL

Arithmetic shift right SHRA

Arithmetic shift left SHLA

Rotate right ROR

Rotate left ROL

Rotate right through carry RORC

Rotate left through carry ROLC

Program Control Instructions

Name Mnemonic

Branch BR

Jump JMP

Skip SKP

Call CALL

Return RET

Compare

(Subtract)
CMP

Test (AND) TST

Subtract A – B but
don’t store the result

1 0 1 1 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

Mask

Conditional Branch

Instructions

Mnemonic Branch Condition Tested Condition

BZ Branch if zero Z = 1

BNZ Branch if not zero Z = 0

BC Branch if carry C = 1

BNC Branch if no carry C = 0

BP Branch if plus S = 0

BM Branch if minus S = 1

BV Branch if overflow V = 1

BNV Branch if no overflow V = 0

Basic

Input/Output

Operations

I/O

⚫ The data on which the instructions operate

are not necessarily already stored in memory.

⚫ Data need to be transferred between

processor and outside world (disk, keyboard,

etc.)

⚫ I/O operations are essential, the way they are

performed can have a significant effect on the

performance of the computer.

Program-Controlled I/O

Example

⚫ Read in character input from a keyboard and
produce character output on a display screen.

➢ Rate of data transfer (keyboard, display, processor)

➢ Difference in speed between processor and I/O device
creates the need for mechanisms to synchronize the
transfer of data.

➢ A solution: on output, the processor sends the first
character and then waits for a signal from the display
that the character has been received. It then sends the
second character. Input is sent from the keyboard in a
similar way.

Program-Controlled I/O

Example

DATAIN DATAOUT

SIN SOUT

Key board Display

Bus

Figure 2.19 Bus connection for processor, keyboard, and display.

Processor

- Registers

- Flags

- Device interface

Program-Controlled I/O

Example

⚫ Machine instructions that can check the state

of the status flags and transfer data:
READWAIT Branch to READWAIT if SIN = 0

Input from DATAIN to R1

WRITEWAIT Branch to WRITEWAIT if SOUT = 0

Output from R1 to DATAOUT

Program-Controlled I/O

Example

⚫ Memory-Mapped I/O – some memory

address values are used to refer to peripheral

device buffer registers. No special

instructions are needed. Also use device

status registers.

READWAIT Testbit #3, INSTATUS

Branch=0 READWAIT

MoveByte DATAIN, R1

Program-Controlled I/O

Example

⚫ Assumption – the initial state of SIN is 0 and the

initial state of SOUT is 1.

⚫ Any drawback of this mechanism in terms of

efficiency?

⚫ Two wait loops→processor execution time is wasted

⚫ Alternate solution?

⚫ Interrupt

Stacks

Home Work

⚫ For each Addressing modes mentioned

before, state one example for each

addressing mode stating the specific benefit

for using such addressing mode for such an

application.

Stack Organization

SP

Stack Bottom

Current
Top of Stack

TOS⚫ LIFO

Last In First Out
0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

Stack Organization

SP

Stack Bottom

Current
Top of Stack

TOS⚫ PUSH

SP ← SP – 1

M[SP] ← DR

If (SP = 0) then (FULL ← 1)

EMPTY ← 0

0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

1 6 9 0

1 6 9 0Current
Top of Stack

TOS

Stack Organization

SP

Stack Bottom

Current
Top of Stack

TOS⚫ POP

DR ← M[SP]

SP ← SP + 1

If (SP = 11) then (EMPTY ← 1)

FULL ← 0

0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

1 6 9 01 6 9 0

Current
Top of Stack

TOS

0

1

2

102

202

201

200

100

101

Stack Organization

⚫ Memory Stack

⚫ PUSH

SP ← SP – 1

M[SP] ← DR

⚫ POP

DR ← M[SP]

SP ← SP + 1

PC

AR

SP

Reverse Polish Notation

⚫ Infix Notation

A + B

⚫ Prefix or Polish Notation

+ A B

⚫ Postfix or Reverse Polish Notation (RPN)

A B +

A B + C D A B C D +
RPN

(2) (4) (3) (3) +

(8) (3) (3) +

(8) (9) +

17

Reverse Polish Notation

⚫ Example

(A + B) [C (D + E) + F]

(A B +) (D E +) C F +

Reverse Polish Notation

⚫ Stack Operation

(3) (4) (5) (6) +

PUSH 3

PUSH 4

MULT

PUSH 5

PUSH 6

MULT

ADD

3

4

12

5

6

30

42

Additional

Instructions

Logical Shifts

⚫ Logical shift – shifting left (LShiftL) and shifting right
(LShiftR)

CR00

before:

after:

0

1

0 0 01 1 1 . . . 11

0 0 1 1 1 000

(b) Logical shift r ight LShiftR #2,R0

(a) Logical shift left LShiftL #2,R0

C R0 0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 00101

. . .

Arithmetic Shifts

C

before:

after:

0

1

1 1 00 0 1 . . . 01

1 1 0 0 1 011

(c) Ar ithmetic shift right AShiftR #2,R0

R0

. . .

Rotate

Figure 2.32. Rotate instructions.

CR0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 0 1 1 1 001

(c) Rotate right without carry RotateR #2,R0

(a) Rotate left without carry RotateL #2,R0

C R0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 10101

C

before:

after:

0

1

0 0 01 1 1 . . . 11

1 0 1 1 1 000

(d) Rotate right with carry RotateRC #2,R0

R0

. . .

. . .

(b) Rotate left with carry RotateLC #2,R0

C R0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 00101

Multiplication and Division

⚫ Not very popular (especially division)

⚫ Multiply Ri, Rj

Rj ← [Ri] х [Rj]

⚫ 2n-bit product case: high-order half in R(j+1)

⚫ Divide Ri, Rj

Rj ← [Ri] / [Rj]

Quotient is in Rj, remainder may be placed in R(j+1)

Encoding of

Machine

Instructions

Encoding of Machine

Instructions

⚫ Assembly language program needs to be converted into machine
instructions. (ADD = 0100 in ARM instruction set)

⚫ In the previous section, an assumption was made that all
instructions are one word in length.

⚫ OP code: the type of operation to be performed and the type of
operands used may be specified using an encoded binary pattern

⚫ Suppose 32-bit word length, 8-bit OP code (how many instructions
can we have?), 16 registers in total (how many bits?), 3-bit
addressing mode indicator.

⚫ Add R1, R2

⚫ Move 24(R0), R5

⚫ LshiftR #2, R0

⚫ Move #$3A, R1

⚫ Branch>0 LOOP

OP code Source Dest Other info

8 7 7 10

(a) One-word instruction

Encoding of Machine

Instructions

⚫ What happens if we want to specify a memory

operand using the Absolute addressing mode?

⚫ Move R2, LOC

⚫ 14-bit for LOC – insufficient

⚫ Solution – use two words

(b) Two-word instruction

Memory address/Immediate operand

OP code Source Dest Other info

Encoding of Machine

Instructions

⚫ Then what if an instruction in which two operands

can be specified using the Absolute addressing

mode?

⚫ Move LOC1, LOC2

⚫ Solution – use two additional words

⚫ This approach results in instructions of variable

length. Complex instructions can be implemented,

closely resembling operations in high-level

programming languages – Complex Instruction Set

Computer (CISC)

Encoding of Machine

Instructions

⚫ If we insist that all instructions must fit into a single

32-bit word, it is not possible to provide a 32-bit

address or a 32-bit immediate operand within the

instruction.

⚫ It is still possible to define a highly functional

instruction set, which makes extensive use of the

processor registers.

⚫ Add R1, R2 ----- yes

⚫ Add LOC, R2 ----- no

⚫ Add (R3), R2 ----- yes

